Feature Selection in Decision Systems: A Mean-Variance Approach
نویسندگان
چکیده
منابع مشابه
Multistage mean-variance portfolio selection in cointegrated vector autoregressive systems
The problem of portfolio choice is an example of sequential decision making under uncertainty. Investors must consider their attitudes towards risk and reward in face of an unknown future, in order to make complex financial choices. Often, mathematical models of investor preferences and asset return dynamics aid in this process, resulting in a wide range of portfolio choice paradigms, one of wh...
متن کاملProposed Feature Selection for Dynamic Thermal Management in Multicore Systems
Increasing the number of cores in order to the demand of more computing power has led to increasing the processor temperature of a multi-core system. One of the main approaches for reducing temperature is the dynamic thermal management techniques. These methods divided into two classes, reactive and proactive. Proactive methods manage the processor temperature, by forecasting the temperature be...
متن کاملA Parallel Genetic Algorithm Based Method for Feature Subset Selection in Intrusion Detection Systems
Intrusion detection systems are designed to provide security in computer networks, so that if the attacker crosses other security devices, they can detect and prevent the attack process. One of the most essential challenges in designing these systems is the so called curse of dimensionality. Therefore, in order to obtain satisfactory performance in these systems we have to take advantage of app...
متن کاملMean-Variance Optimization in Markov Decision Processes
We consider finite horizon Markov decision processes under performance measures that involve both the mean and the variance of the cumulative reward. We show that either randomized or history-based policies can improve performance. We prove that the complexity of computing a policy that maximizes the mean reward under a variance constraint is NP-hard for some cases, and strongly NP-hard for oth...
متن کاملA Feature Selection Approach of Inconsistent Decision Systems in Rough Set
Feature selection has been widely discussed as an important preprocessing step in data mining applications since it reduces a model's complexity. In this paper, limitations of several representative reduction methods are analyzed firstly, and then by distinguishing consistent objects form inconsistent objects, decision inclusion degree and its probability distribution function as a new measure ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Problems in Engineering
سال: 2013
ISSN: 1024-123X,1563-5147
DOI: 10.1155/2013/268063